

Venus Express Legacy Session

ASPERA-4

Sensors, science, operation, analysis, tools, and archive

Yoshifumi Futaana

Swedish Institute of Space Physics

- Principal Investigator (Swedish Institute of Space Physics, Kiruna)
 - Yoshifumi Futaana (2014–)
 - Stas Barabash (–2013)
- Co-Investigators from 17 groups in 12 countries

R. Lundin, H. Andersson, A. Grigoriev,

M. Holmström, M. Yamauchi

K. Asamura

W. Baumjohann, T. Zhang

P. Bochsler, P. Wurz

P. C:son Brandt, E. Roelof

A. Coates, D.R.Linder, D.O.Kataria

C. C. Curtis, K. C. Hsieh, B. R. Sandel

A. Fedorov, J.-J. Thocaven

R. Frahm, J. Sharber, D. Wintingham

M. Grande

H. Koskinen, E. Kallio, P. Riihela, T. Säles

J. Kozyra

N. Krupp, J. Woch

J. Luhmann

S. McKenna-Lawlor

S. Orsini, R. Cerulli-Irelli, A. Mura, A. Milillo

K. Szego

IRF, Kiruna, Sweden

JAXA / ISAS, Sagamihara, Japan

SRI, Graz, Austria

UBe, Switzerland

APL /JHU, Laurel, USA

MSSL, UK

UA, Tucson, USA

CESR, Toulouse, France

SwRI, San Antonio, USA

RAL, Oxfordshire, UK

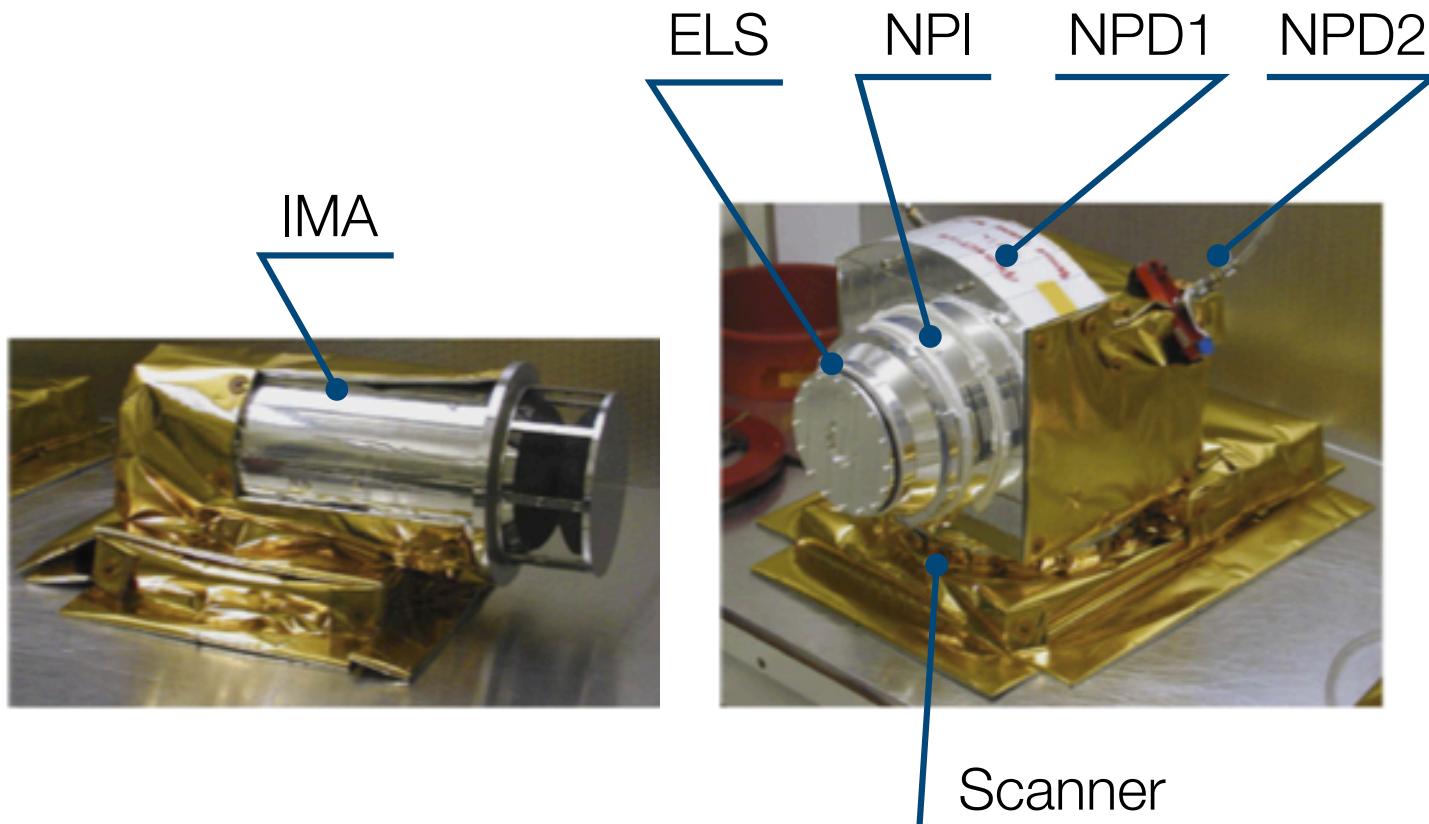
FMI, Helsinki, Finland

SPRL /U. of Michigan, Ann Arbor, USA

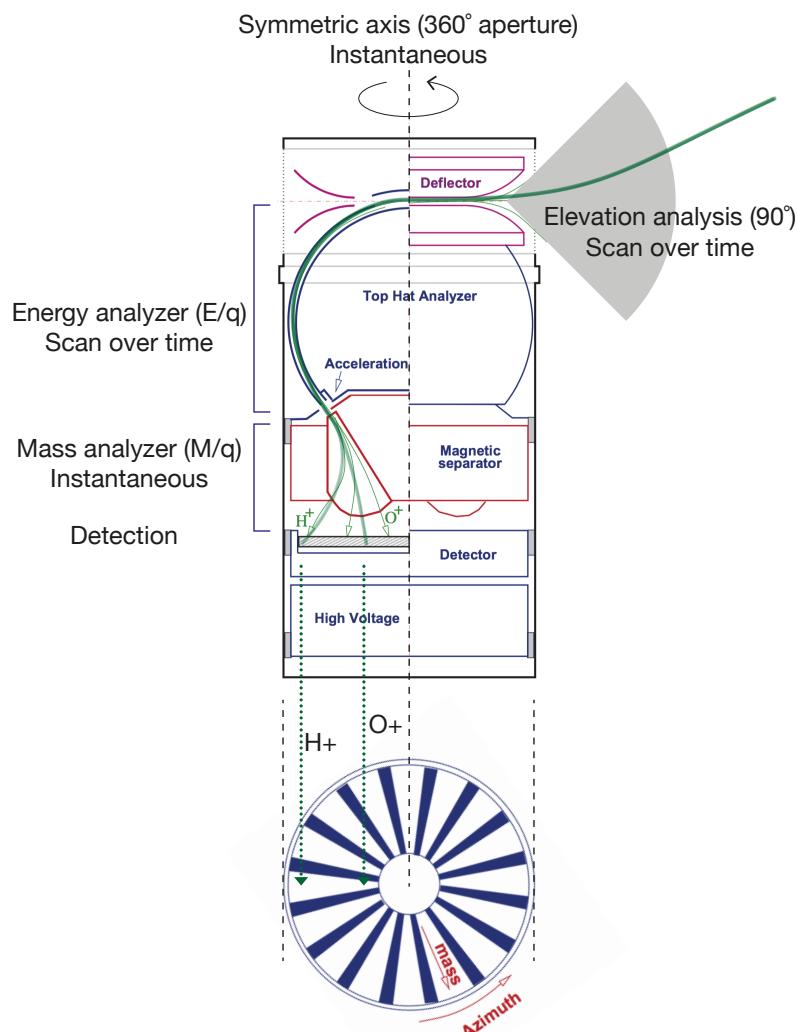
MPAe, Katlenburg-Lindau, Germany

SSL /U. of California in Berkeley, USA

STIL, Ireland


IFSI, Rome, Italy

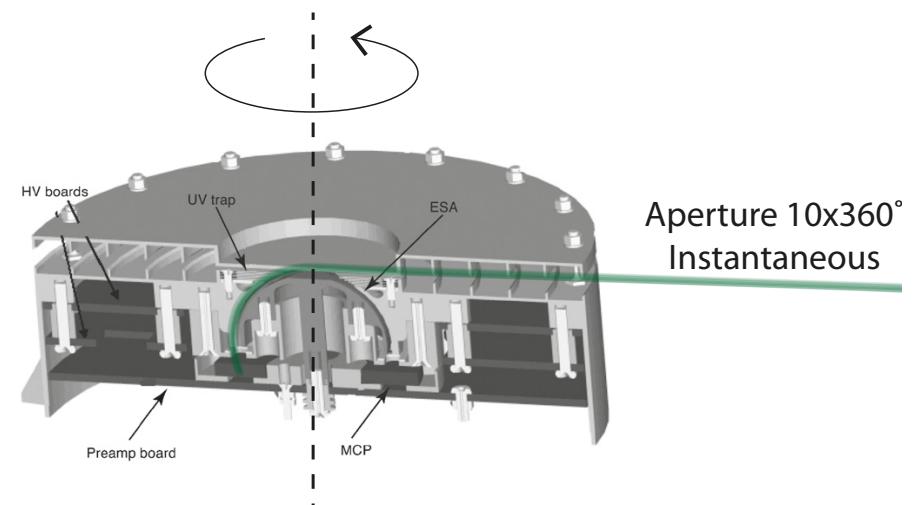
KFKI, Budapest, Hungary


ASPERA-4 instrument

$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \text{NPI} + \text{NPD} \times 2}{\text{Scanner}}$$

IMA: Ion Mass Analyzer

$$\text{ASPERA-4} = \boxed{\text{IMA}} + \frac{\text{ELS} + \text{NPI} + \text{NPD} \times 2}{\text{Scanner}}$$


Parameter	IMA
Particles to be measured	Ions
Energy, keV per charge	0.01–36
Energy resolution, $\Delta E/E$	0.07
Mass resolution	$m/q = 1, 2, 4, 8, 16, 32, >40$
Intrinsic field of view	$90^\circ \times 360^\circ$
Angular resolution, FWHM	$4.5^\circ \times 22.5^\circ$
G-factor/pixel, $\text{cm}^2 \text{ sr}$	3.5×10^{-4}
Efficiency, %	Incl. in G-factor
Time resolution (full 3D), s	196
Mass, kg	2.4

ELS: Electron Spectrometer

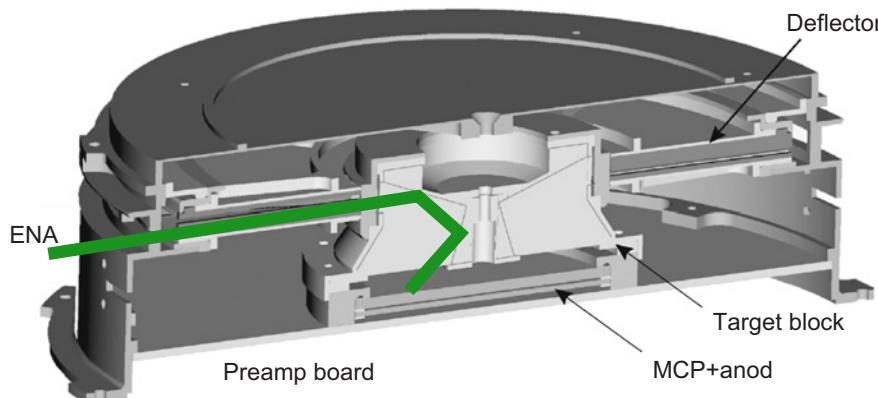
$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \text{NPI} + \text{NPD} \times 2}{\text{Scanner}}$$

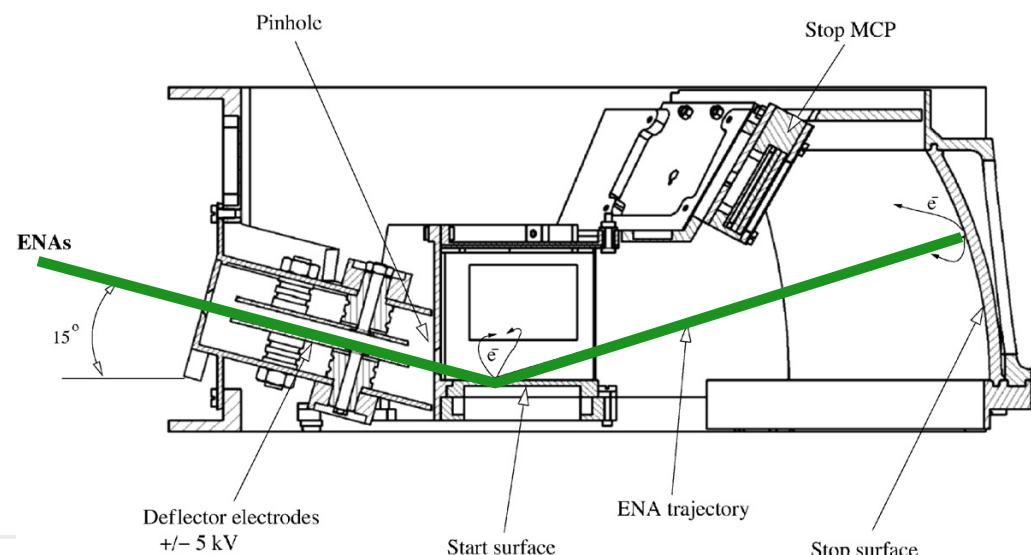
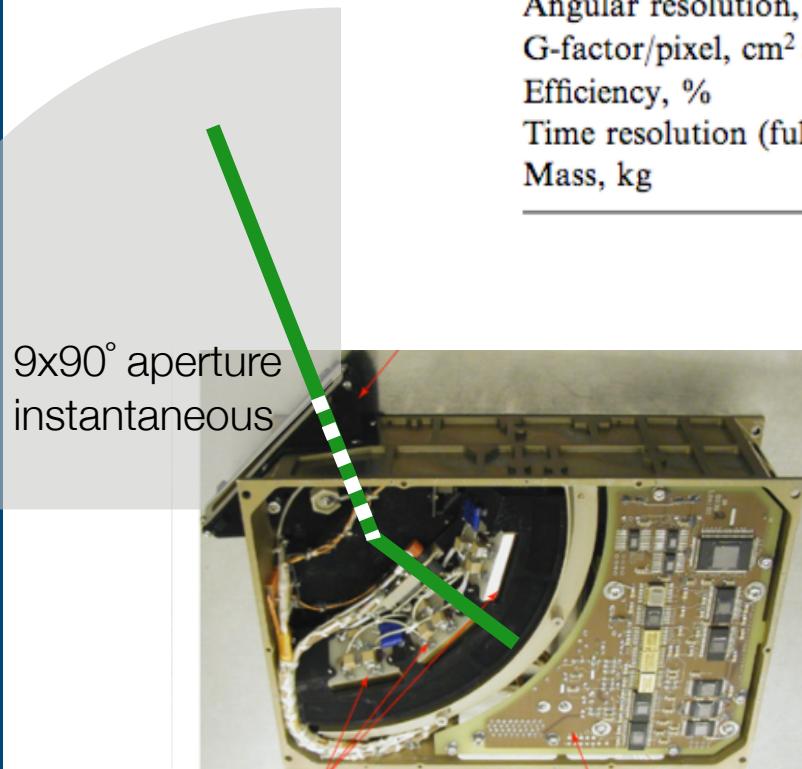
Parameter	ELS
Particles to be measured	Electrons
Energy, keV per charge	0.01–15
Energy resolution, $\Delta E/E$	0.07
Mass resolution	—
Intrinsic field of view	$10^\circ \times 360^\circ$
Angular resolution, FWHM	$10^\circ \times 22.5^\circ$
G-factor/pixel, $\text{cm}^2 \text{sr}$	7×10^{-5}
Efficiency, %	Incl. in G-factor
Time resolution (full 3D), s	32
Mass, kg	0.3

Symmetric axis (360° aperture)
Instantaneous

NPI: Neutral Particle Imager

$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \boxed{\text{NPI}} + \text{NPD} \times 2}{\text{Scanner}}$$

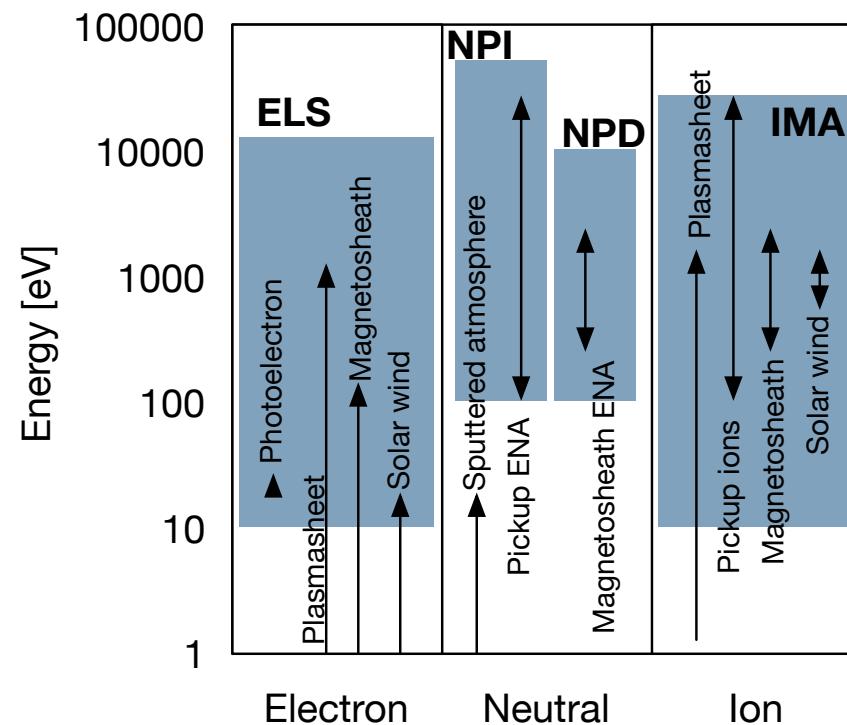




Fig. 2. Cut-away view of the NPI sensor.

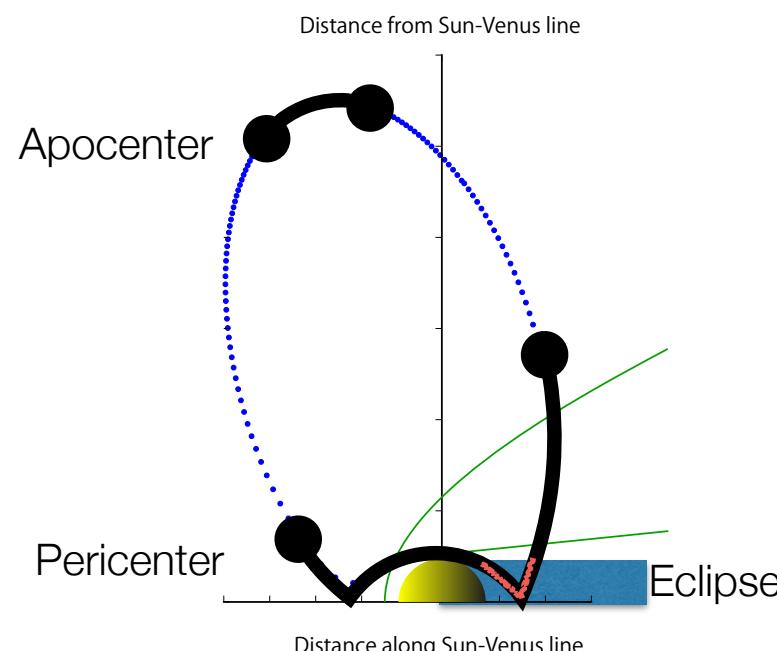
Parameter	NPI
Particles to be measured	ENA
Energy, keV per charge	$\approx 0.1\text{--}60$
Energy resolution, $\Delta E/E$	—
Mass resolution	—
Intrinsic field of view	$9^\circ \times 344^\circ$
Angular resolution, FWHM	$4.6^\circ \times 11.5^\circ$
G-factor/pixel, $\text{cm}^2 \text{ sr}$	2.7×10^{-3}
Efficiency, %	≈ 1
Time resolution (full 3D), s	32
Mass, kg	0.7

NPD: Neutral Particle Detector

$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \text{NPI} + \boxed{\text{NPD}} \times 2}{\text{Scanner}}$$


Parameter	NPD
Particles to be measured	ENA
Energy, keV per charge	0.1–10
Energy resolution, $\Delta E/E$	0.8
Mass resolution	H, O
Intrinsic field of view	$9^\circ \times 180^\circ$
Angular resolution, FWHM	$5^\circ \times 30^\circ$
G-factor/pixel, $\text{cm}^2 \text{sr}$	6.2×10^{-3}
Efficiency, %	0.5–15
Time resolution (full 3D), s	32
Mass, kg	0.65 each

Energy & charge state


$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \text{NPI} + \text{NPD} \times 2}{\text{Scanner}}$$

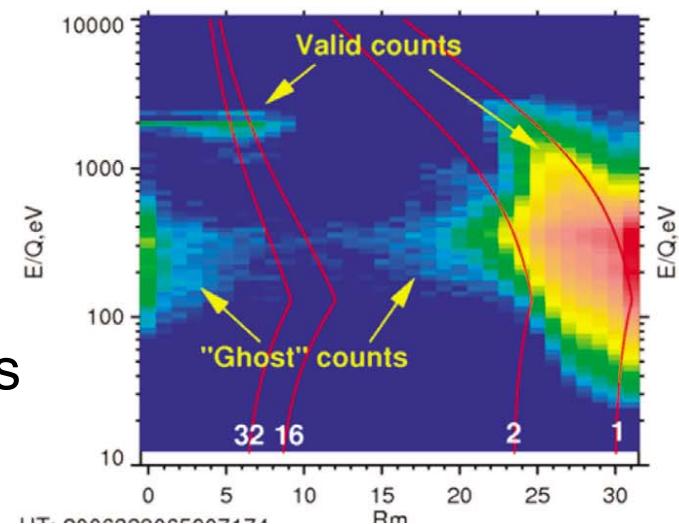
Using four sensors, ASPERA-4 measures Venus plasma environment and plasma-atmosphere interaction near Venus

- Venus has **no intrinsic magnetic field**. Atmosphere interacts with solar wind directly.
 - Different from Earth. Rather similar to Mars.
- Scientific goals
 - Atmosphere coupling with the solar wind
 - Mass addition/removal from the atmosphere
 - Structure of the induced magnetosphere
 - Mass composition of the escaping plasma
 - Loss of water
 - Neutral–plasma interaction
 - Comparative planetology (Earth, Mars)
 - Long-term variabilities (solar-cycle dependence)
 - **Lower ionosphere characterization & dynamics (aerobraking)**
- Most of the above had been / are going to be addressed.
- New ideas of data analysis is welcome.

		IMA	ELS	NPI	NPD	scan	Observation time	Notes
Regular	Pericenter	✓	✓	✓ ¹⁾	✓ ^{2,3)}	Fix	3–6 hr near pericenter	±1-2 hr outside BS
	Eclipse	✓	✓	✓	✓	Fix or Scan	In shadow	Limited scanner operation
	Apocenter	✓	✓	✓ ¹⁾	✓ ²⁾	Fix	1–2 hr near apocenter	Avoid WOL
Special	Calibration				On demand			<ul style="list-style-type: none"> - ELS degradation check - Functionality improvement
	Special ops				On demand			<ul style="list-style-type: none"> - Solar wind continuous - Aerobraking

1) NPI OFF: Sun-FOV angle $< 30^\circ$
 2) NPD OFF: Sun-FOV angle $< 60^\circ$
 3) NPD OFF: Venus-FOV angle $< 5^\circ$

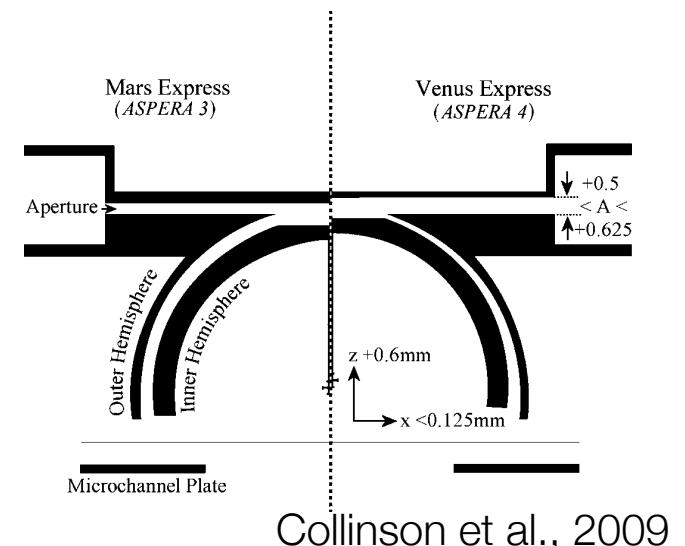
Data products (General)


- Most valuable data is "counts".
 - Number of particles (ion, electron & ENAs) arriving at the detector
- Counts is proportional to the differential flux (j)
 - Number of particles with specific mass, energy and direction ranges

$$C(M, \phi, E, \theta) \propto j(M, \phi, E, \theta) \cdot \Delta M \cdot \Delta \phi \cdot \Delta E \cdot \Delta \theta$$

	IMA	ELS	NPI	NPD
Mass	32	–	Σ	Yes
ϕ	16	16	32	6
Energy	96	128	Σ	Yes
θ	8 or 16	(scanner)	(scanner)	(scanner)

$$C(M, \phi, E, \theta) \propto j(M, \phi, E, \theta) \cdot \Delta M \cdot \Delta \phi \cdot \Delta E \cdot \Delta \theta$$


- Data product is time series of 4-D matrix
 - $C[32, 16, 96, 16]$ (2010–) over 192s
 - $C[32, 16, 96, 8]$ (–2010) over 192s
- Indeed, it is time series of 2-D matrix
 - $C[32, 16, E_i, \theta_j]$ at specific time
 - E scan over 12s at fixed θ
 - 16- θ scan, taking 192s
- Representation depends on the objectives
 - Slice or collapse in certain dimensions
- Issues
 - Non- 4π FOV
 - Spacecraft blockage of FOV
 - Interference during high-count rate
 - Proton is edge of mass capabilities

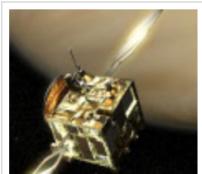
Fedorov et al., 2011

$$C(\phi, E) \propto j(\phi, E) \cdot \Delta\phi \cdot \Delta E$$

- Data is time series of 2-D counts:
 - $C[16, 128]$ every 4s
- Or indeed, it's time series of 1-D counts
 - $C[16, E_i]$ at specific time
 - E scan over 4s
- Sometimes fast-scan campaign was conducted
 - $C[16, 32]$ with 1s resolution
- Issues
 - Limited FOV (plane-shaped)
 - Not much scanner operation covering 4π
 - Unsettled performance due to miss-alignment of the sensor

Collinson et al., 2009

- Status
 - All ASPERA-4 data product is archived under PSA
- Available product in PSA
 - Spectra (matrix) of ions, electrons, and ENAs. Raw counts.
 - Ongoing higher-level product: Moment (density, speed, and temperature) in the solar wind – to be archived in PSA (est ~1 year)
- Tools to read PSA tables
 - No tools exist
 - No plans to implement


Research & Science Home | ESA Public Web Site | Sci-Tech Portal | ESA Intranet

esa PLANETARY SCIENCE ARCHIVE

Astrophysics Missions | Planetary Exploration Missions | Solar Terrestrial Science Missions | Fundamental Physics Missions | Science Faculty

6-April-2016 10:00:30

Venus Express

 Venus Express (VEX) is investigating the complex dynamics and chemistry of the Venusian atmosphere, and the interactions between the atmosphere and the surface, which will give clues about the characteristics of the surface. VEX will also study the interactions between the atmosphere and the inter-planetary environment (solar wind) to better understand the evolution of the planet. On 09 November 2005 Soyuz-Fregat launcher set Venus Express on

Data Access

Advanced Search | Browse FTP

Resources

Workshops

PSA

- Home
- Introduction to PSA
- PSA User Group
- Contact Us
- Data Access**
- FTP Browser
- Map-based Search
- Advanced Search
- Solar System Missions**
- BepiColombo
- Giotto
- Huygens
- Mars Express
- Rosetta

Int

14 / 17

Data analysis: Recommended way

- Contact to the PI, **futaana@irf.se**
- Unofficial tools for data analysis
 - Quick look web services
 - AMDA (IRAP)
 - SDDAS (SwRI)
 - Plotting software
 - SDDAS (SwRI)
 - CL (IRAP)
 - Analysis package/library
 - Ccati (MPS)
 - **irfpy (IRF) – newly developing analysis environment powered by python3**
 - Raw count access.
 - High-level product access / conversion
 - SPICE-integrated

- ASPERA-4 data workshop in Beijing (jointly with ASPERA-3)
 - 8–10 August 2016 (TBD)
 - NAOC, Beijing
 - Invitation only
 - Organized by D Titov & J Cui
- Similar workshop can be supported upon request
- Individual support is always best
 - Best way is stay at IRF, Kiruna
 - ZJ Rong (China)
 - K Masunaga (Japan)
 - G Collinson (US)

$$\text{ASPERA-4} = \text{IMA} + \frac{\text{ELS} + \text{NPI} + \text{NPD} \times 2}{\text{Scanner}}$$

IMA: $C(M, \phi, E, \theta) \propto j(M, \phi, E, \theta) \cdot \Delta M \cdot \Delta \phi \cdot \Delta E \cdot \Delta \theta$

ELS: $C(\phi, E) \propto j(\phi, E) \cdot \Delta \phi \cdot \Delta E$

C : counts

j : differential flux

M : mass

E : energy

θ, ϕ : angles

Contact: Yoshifumi Futaana (futaana@irf.se)

